Here is a list of the main formulas that appear in high school physics.
Mechanics
\(v=\frac{x}{t}\)
\(v_{\mathrm{AB}}=v_{\mathrm{B}}-v_{\mathrm{A}}\)
\(a=\frac{\Delta v}{\Delta t}\)
\(v=v_{0}+at\)
\(x=v_{0}t+\frac{1}{2}at^2\)
\(v^{2}-v_{0}^{2}=2ax\)
\(W=mg\)
\(F=kx\)
\(f=\mu N\)
\(f’=\mu’ N\)
\(P=\frac{F}{S}\)
\(P=\rho hg\)
\(F=\rho Vg\)
\(ma=F\)
\(W=Fx\cos \theta\)
\(P=\frac{W}{t}\)
\(K=\frac{1}{2}mv^2\)
\(U=mgh\)
\(U=\frac{1}{2}kx^2\)
\(E=K+U\)
\(M=Fl\)
\(x_{\mathrm{G}}=\frac{m_{1}x_{1}+m_{2}x_{2}}{m_{1}+m_{2}}\)
\(\vec{p}=m\vec{v}\)
\(m\vec{v^{\prime}}-m\vec{v}=\vec{F}\Delta t\)
\(v_{1}^{\prime}-v_{2}^{\prime}=-e(v_{1}-v_{2})\)
\(\omega=\frac{\theta}{t}\)
\(v=r \omega\)
\(vT=2\pi r\)
\(\omega T=2\pi\)
\(a=\frac{v^2}{r}\)
\(a=r \omega ^2\)
\(F=m\frac{v^2}{r}\)
\(F=mr\omega ^2\)
\(x=A\sin \omega t\)
\(x=A\omega \cos \omega t\)
\(x=-A\omega ^2\sin \omega t\)
\(T=2\pi \sqrt{\frac{m}{k}}\)
\(T=2\pi \sqrt{\frac{l}{g}}\)
\(\frac{1}{2}rv\sin \theta =const\)
\(\frac{T^2}{a^3} =const\)
\(F=G\frac{m_{1}m_{2}}{r^2}\)
\(U=-G\frac{m_{1}m_{2}}{r}\)
Thermodynamics
\(T=t+273\)
\(Q=C\Delta T\)
\(Q=mc\Delta T\)
\(C=mc\)
\(Q=\Delta U+W\)
\(e=\frac{W}{Q_1}=\frac{Q_{1}-Q_2}{Q_1}\)
\(\frac{PV}{T}=const\)
\(PV=nRT\)
\(PV=NkT\)
\(k=\frac{R}{N_{\mathrm{A}}}\)
\(U=nC_{V}T\)
\(W=P\Delta V\)
\(Q=nC_{V}\Delta T\)
・\(Q=nC_{P}\Delta T\)
\(C_{P}=C_{V}+R\)
Waves
\(fT=1\)
\(v=f\lambda\)
\(f=|f_{1}-f_{2}|\)
\(y=A\sin 2\pi (\frac{t}{T}-\frac{x}{\lambda})\)
\(\frac{\sin i}{\sin r}=\frac{v_1}{v_2}=\frac{\lambda _1}{\lambda _2}=\frac{n_2}{n_1}\)
\(f^{\prime}=\frac{V-v_{\mathrm{o}}}{V-v_{\mathrm{s}}}f\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{f}\)
Electromagnetism
\(R=\rho \frac{l}{S}\)
\(I=\frac{|Q|}{t}\)
\(V=RI\)
\(P=IV\)
\(W=Pt\)
\(R=R_{1}+R_2\)
\(\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}\)
\(F=k\frac{q_{1}q_{2}}{r^2}\)
\(E=k\frac{|Q|}{r^2}\)
\(\vec{F}=q\vec{E}\)
\(U=qV\)
\(V=k\frac{Q}{r}\)
\(E=\frac{V}{d}\)
\(N=4\pi k|Q|\)
\(Q=CV\)
\(C=\varepsilon \frac{S}{d} \)
\(\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}\)
\(C=C_{1}+C_2\)
\(U=\frac{1}{2}QV\)
\(H=\frac{I}{2\pi r}\)
\(H=\frac{I}{2r}\)
\(H=nI\)
\(B=\mu H\)
\(F=IBl\sin \theta\)
\(\Phi =BS\)
\(f=|q|vB\sin \theta\)
\(V=-N\frac{\Delta \Phi}{\Delta t}\)
\(V=-L\frac{\Delta I}{\Delta t}\)
\(V_{2}=-M\frac{\Delta I_1}{\Delta t}\)
\(V_{1}:V_{2}=N_{1}:N_{2}\)
\(U=\frac{1}{2}LI^2\)
\(\overline{P}=\frac{1}{2}I_{0}V_0\)
\(V_{\mathrm{e}}=\frac{1}{\sqrt{2}}V_0\)
\(I_{\mathrm{e}}=\frac{1}{\sqrt{2}}I_0\)
\(X_{\mathrm{L}}=\omega L\)
\(X_{\mathrm{C}}=\frac{1}{\omega C}\)
\(Z=\frac{V_0}{I_0}\)
\(f_{0}=\frac{1}{2\pi \sqrt{LC}}\)
Old Quantum Theory
\(E=h\nu\)
\(h\nu =W+K_{\mathrm{M}}\)
\(p=\frac{h}{\lambda}\)
\(\lambda =\frac{h}{mv}\)
\(2\pi r=n \frac{h}{mv}\)
\(N=N_{0}(\frac{1}{2})^{\frac{t}{T}}\)
\(E=mc^2\)